32 research outputs found

    Metaheuristics for Transmission Network Expansion Planning

    Get PDF
    This chapter presents the characteristics of the metaheuristic algorithms used to solve the transmission network expansion planning (TNEP) problem. The algorithms used to handle single or multiple objectives are discussed on the basis of selected literature contributions. Besides the main objective given by the costs of the transmission system infrastructure, various other objectives are taken into account, representing generation, demand, reliability and environmental aspects. In the single-objective case, many metaheuristics have been proposed, in general without making strong comparisons with other solution methods and without providing superior results with respect to classical mathematical programming. In the multi-objective case, there is a better convenience of using metaheuristics able to handle conflicting objectives, in particular with a Pareto front-based approach. In all cases, improvements are still expected in the definition of benchmark functions, benchmark networks and robust comparison criteria

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    Applications to Generation Expansion Planning and Power Network Planning

    No full text
    corecore